(Bi_(0.5)Li_(0.5))HfO_3掺杂铌酸银基反铁电陶瓷的储能特性研究Energy storage properties of (Bi_(0.5)Li_(0.5))HfO_3 doped silver niobate based antiferroelectric ceramics
徐坤,张丹阳,展敏园,曹月丛,徐永豪
摘要(Abstract):
通过在AgNbO_3的A位引入7%(摩尔分数)的Sr~(2+)(Ag_(0.86)Sr_(0.07)NbO_3),在降低了电滞ΔE的同时,将M_2-M_3相变调节至室温附近。在此基础上,结合轧膜成型工艺,设计了(1-x)Ag_(0.86)Sr_(0.07)NbO_3-x(Bi_(0.5)Li_(0.5))HfO_3(ASN-100xBLH,x=0.00~0.12)体系,在1050~1140℃氧气氛下保温2 h制备出致密性良好的厚膜陶瓷样品。结果表明,随着BLH掺杂浓度的增加,ASN-100xBLH陶瓷的击穿场强与储能特性均有不同程度的提升。在460 kV·cm~(-1)电场下,ASN-11BLH的储能性能达到最优,储能密度和储能效率分别为4.6 J·cm~(-3)和90.0%。此外,ASN-11BLH陶瓷表现出较好的温度稳定性和频率稳定性。在300 kV·cm~(-1)电场下,25~120℃的温度范围内,储能密度和储能效率的变化率分别为9.4%和9.8%;10~500 Hz频率范围内,储能密度和储能效率的变化率分别为1.9%和1.2%。
关键词(KeyWords): AgNbO_3;相变调控;弛豫特性;轧膜成型;储能特性
基金项目(Foundation): 国家自然科学基金-青年基金(51702089);; 河南省科技攻关项目(212102210177);; 河南理工大学杰出青年科学基金(J2022-4)
作者(Author): 徐坤,张丹阳,展敏园,曹月丛,徐永豪
DOI: 10.14106/j.cnki.1001-2028.2023.0231
参考文献(References):
- [1] Hao X.A review on the dielectric materials for high energy-storage application [J].Journal of Advanced Dielectrics,2013,3(1):1330001-1330014.
- [2] Yao L,Pan Z,Liu S,et al.Significantly enhanced energy density in nanocomposite capacitors combining the TiO2 nanorod array with poly(vinylidene fluoride) [J].ACS Applied Materials & Interfaces,2016,8(39):26343-26351.
- [3] Hou C,Huang W,Zhao W,et al.Ultrahigh energy density in SrTiO3 film capacitors [J].ACS Applied Materials & Interfaces,2017,9(24):20484-20490.
- [4] Chauhan A,Patel S,Vaish R,et al.Anti-ferroelectric ceramics for high energy density capacitors [J].Materials,2015,8(12):8009-8031.
- [5] Yao Z,Song Z,Hao H,et al.Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances [J].Advanced Materials,2017,29(20):1601727-1601741.
- [6] Kwon S,Hackenberger W,Alberta E,et al.Nonlinear dielectric ceramics and their applications to capacitors and tunable dielectrics [J].IEEE Electrical Insulation Magazine,2011,27(2):43-55.
- [7] Pan W Y,Dam C Q,Zhang Q M,et al.Large displacement transducers based on electric field forced phase transitions in the tetragonal (Pb0.97La0.02)(Ti,Zr,Sn)O3 family of ceramics [J].Journal of Applied Physics,1989,66(12):6014-6023.
- [8] Pan M J,Pertsch P,Yoshikawa S,et al.Electroactive actuator materials:Investigations on stress and temperature characteristics [C]//Proceedings of the SPIE's 5 th International Symposium on Smart Structures and Materials.Washington:SPIE,1998:145-153.
- [9] 冯玉军,徐卓,陈富涛,等.爆电换能用反铁电材料 [J].压电与声光,2005,27(2):156-159.
- [10] Ye J,Liu Y,Lu Y,et al.Enhanced energy-storage properties of SrTiO3 doped (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3 lead-free antiferroelectric ceramics [J].Journal of Materials Science:Materials in Electronics,2014,25(10):4632-4637.
- [11] Borkar H,Singh V N,Singh B P,et al.Room temperature lead-free relaxor-antiferroelectric electroceramics for energy storage applications [J].RSC Advances,2014,4(44):22840-22847.
- [12] Lee F Y,Jo H R,Lynch C S,et al.Pyroelectric energy conversion using PLZT ceramics and the ferroelectric-ergodic relaxor phase transition [J].Smart Materials and Structures,2013,22(2):025038.
- [13] Ringgaard E,Wurlitzer T.Lead-free piezoceramics based on alkali niobates [J].Journal of the European Ceramic Society,2005,25(12):2701-2706.
- [14] 肖定全.关于无铅压电陶瓷及其应用的几个问题 [J].电子元件与材料,2004,23(11):1-4.
- [15] Fu D,Endo M,Taniguchi H,et al.AgNbO3:A lead-free material with large polarization and electromechanical response [J].Applied Physics Letters,2007,90(25):252907.
- [16] Tian Y,Jin L,Zhang H,et al.High energy density in silver niobate ceramics [J].Journal of Materials Chemistry A,2016,4(44):17279-17287.
- [17] Kania A,Roleder K,Kugel G E,et al.Raman scattering,central peak and phase transitions in AgNbO3 [J].Journal of Physics C:Solid State Physics,1986,19(9):9-20.
- [18] Kania A,Kwapulinski J.Ag1-xNaxNbO3(ANN) solid solutions:From disordered antiferroelectric AgNbO3 to normal antiferroelectric NaNbO3 [J].Journal of Physics Condensed Matter,1999,11(45):8933-8946.
- [19] Gao J,Zhao L.Antiferroelectric-ferroelectric phase transition in lead-free AgNbO3 ceramics for energy storage applications [J].Journal of the American Ceramic Society,2018,101(12):5443-5450.
- [20] Sciau P,Kania A,Dkhil B,et al.Structural investigation of AgNbO3 phases using X-ray and neutron diffraction [J].Journal of Physics:Condensed Matter,2004,16(16):2795-2810.
- [21] Ratuszna A,Pawluk J,Kania A,et al.Temperature evolution of the crystal structure of AgNbO3 [J].Phase Transitions,2003,76(6):611-620.
- [22] Kania A,Niewiadomski A,Miga S,et al.Silver deficiency and excess effects on quality,dielectric properties and phase transitions of AgNbO3 ceramics [J].Journal of the European Ceramic Society,2014,34(7):1761-1770.
- [23] Zhao L,Liu Q,Zhang S,et al.Lead-free AgNbO3 anti-ferroelectric ceramics with an enhanced energy storage performance using MnO2 modification [J].Journal of Materials Chemistry C,2016,4(36):8380-8384.
- [24] Tian Y,Jin L,Zhang H,et al.Phase transitions in bismuth-modified silver niobate ceramics for high power energy storage [J].Journal of Materials Chemistry A,2017,5(33):17525-17531.
- [25] Zhao L,Liu Q,Gao J,et al.lead-free antiferroelectric silver niobate tantalate with high energy storage performance [J].Advanced Materials,2017,29(31):1701824.
- [26] Han K,Luo N,Mao S,et al.Realizing high low-electric-field energy storage performance in AgNbO3 ceramics by introducing relaxor behavior [J].Journal of Materiomics,2019,5(4):597-605.
- [27] Levin I,Krayzman V,Woicik J C,et al.Structural changes underlying the diffuse dielectric response in AgNbO3 [J].Physical Review B,2009,79(10):104113.
- [28] Aydi A,Khemakhem H,Simon A,et al.Study of ceramic materials in the SrSnO3-NaNbO3 system by X-ray diffraction,dielectric and Raman spectroscopy [J].Journal of Alloys and Compounds,2009,484(1):356-359.
- [29] Yang L,Kong X,Li F,et al.Perovskite lead-free dielectrics for energy storage applications [J].Progress in Materials Science,2019,5(102):72-108.
- [30] Yang Z,Du H,Jin L,et al.High-performance lead-free bulk ceramics for electrical energy storage applications:Design strategies and chanellenges [J].Journal of Materials Chemistry A,2021,34(9):18026-18085.
- [31] Zhao P,Tang B,Fang Z,et al.Improved dielectric breakdown strength and energy storage properties in Er2O3 modified Sr0.35Bi0.35K0.25TiO3 [J].Chemical Engineering Journal,2021,403:126290.
- [32] Zhang F,Qiao X,Shi Q,et al.High energy storage density realized in Bi0.5Na0.5TiO3-based relaxer ferroelectric ceramics at ultralow sintering temperature [J].Journal of the European Ceramic Society,2021,41(1):368-375.
- [33] Li Q,Zhang G,Liu F,et al.Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets [J].Energy & Environmental Science,2015,8(3):922-931.
- [34] Cheng H,Du H,Zhou W,et al.Bi(Zn2/3Nb1/3)O3-(K0.5Na0.5)NbO3 high-temperature lead-free ferroelectric ceramics with low capacitance variation in a broad temperature usage range [J].Journal of the America Ceramic Society,2013,96:833-837.
- [35] Tian Y,Jin L,Zhang H,et al.Phase transitions in bismuth-modified silver niobate ceramics for high power energy storage [J].Journal of Materials Chemistry A,2017,5(33):17525-17531.
- [36] Gao J,Zhang Y,Zhao L,et al.Enhanced antiferroelectric phase stability in La-doped AgNbO3:Perspectives from the microstructure to energy storage properties [J].Journal of Materials Chemistry A,2019,7(5):2225-2232.
- [37] Li S,Hu T,Nie H,et al.Giant energy density and high efficiency achieved in silver niobate-based lead-free antiferroelectric ceramic capacitors via domain engineering [J].Energy Storage Materials,2021,34:417-426.
- [38] Luo N,Han K,Cabral M J,et al.Constructing phase boundary in AgNbO3 antiferroelectrics:Pathway simultaneously achieving high energy density and efficiency [J].Nature Communications,2020,11(1):4824.
- [39] Xu Y H,Yang Z D,Xu K,et al.Modulated band structure and phase transitions in calcium hafnate titanate modified silver niobate ceramics for energy storage[J].Chemical Engineering Journal,2021,426(2):131047.
- [40] Chao W,Gao J,Yang T,et al.Excellent energy storage performance in La and Ta co-doped AgNbO3 antiferroelectric ceramics [J].Journal of the European Ceramic Society,2021,41(15):7670-7677.
- [41] Yan Z,Zhang D,Zhou X,et al.Silver niobate based lead-free ceramics with high energy storage density [J].Journal of Materials Chemistry A,2019,7(17):10702-10711.
- [42] Yang D,Lan Y,Yuan C,et al.Enhanced energy storage density of antiferroelectric AgNbO3-based ceramics by Bi/Ta modification at A/B sites [J].Journal of Materials Science:Materials in Electronics,2022,33(6):3081-3090.
- [43] Li M,Chen Z P,Che Z Y,et al.Structure and energy storage performance of lanthanide elements doped AgNbO3 lead-free antiferroelectric ceramics [J].Journal of the European Ceramic Society,2022,42(5):2204-2211.
- [44] Li S,Nie H C,Wang G S,et al.Significantly enhanced energy storage performance of rare-earth-modified silver niobate lead-free antiferroelectric ceramics via local chemical pressure tailoring [J].Journal of Materials Chemistry C,2019,7(6):1151-1160.
- [45] Luo N,Han K,Zhuo F P,et al.Aliovalent A-site engineered AgNbO3 lead-free antiferroelectric ceramics toward superior energy storage density [J].Journal of Materials Chemistry A,2019,7(25):14118.
- [46] Luo N,Han K,Zhuo F,et al.Design for high energy storage density and temperature-insensitive lead-free antiferroelectric ceramics [J].Journal of Materials Chemistry C,2019,7(17):4999-5008.
- [47] Zhu X P,Gao Y F,Peng S,et al.Ultrahigh energy storage density in (Bi0.5Na0.5)0.65Sr0.35TiO3 -based lead-free relaxor ceramics with excellent temperature stability [J].Nano Energy,2022,10:107276.
- [48] Kang R,Wang Z,Lou X,et al.Energy storage performance of Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics with superior temperature stability under low electric fields [J].Chemical Engineering Journal,2021,410:128376.
- [49] Li D,Lin Y,Zhang M,et al.Achieved ultrahigh energy storage properties and outstanding charge-discharge performances in (Na0.5Bi0.5)0.7Sr0.3TiO3 -based ceramics by introducing a linear additive [J].Chemical Engineering Journal,2020,392:123729.
- [50] Hu D,Pan Z,Zhang X,et al.Greatly enhanced discharge energy density and efficiency of novel relaxation ferroelectric BNT-BKT-based ceramics [J].Journal of Materials Chemistry C,2020,8(2):591-601.
- [51] Zhang L,Pu Y,Chen M,et al.Novel Na0.5Bi0.5Ti0.5O3 based,lead-free energy storage ceramics with high power and energy density and excellent high-temperature stability [J].Chemical Engineering Journal,2019,383:123154.
- [52] Zhang L Y,Cao S Y,Li Y,et al.Achieving ultrahigh energy storage performance over a broad temperature range in (Bi0.5Na0.5)TiO3 -based eco-friendly relaxor ferroelectric ceramics via multiple engineering processes [J].Journal of Alloys and Compounds,2022,896:163139.
- [53] Meng D,Feng Q,Luo N,et al.Effect of Sr(Zn1/3Nb2/3)O3 modification on the energy storage performance of BaTiO3 ceramics [J].Ceramics International,2021,47(9):12450-12458.
- [54] Xie Z H,Liu J L,Wang W G,et al.Effective strategy to achieve excellent energy storage properties in lead-free BaTiO3-based bulk ceramics [J].ACS Applied Materials & Interfaces,2020,12(7):30289-30296.
- [55] Hu D,Pan Z,Tan X,et al.Optimization the energy density and efficiency of BaTiO3-based ceramics for capacitor applications [J].Chemical Engineering Journal,2020,409:127375.
- [56] Yang H J,Lu Z,Li L,et al.Novel BaTiO3-based,Ag/Pd-compatible lead-free relaxors with superior energy storage performance [J].ACS Applied Materials & Interfaces,2020,12(9):43942-43949.
- [57] Zhang M,Yang H,Li D,et al.Giant energy storage efficiency and high recoverable energy storage density achieved in K0.5Na0.5NbO3-Bi(Zn0.5Zr0.5)O3 ceramics [J].Journal of Materials Chemistry C,2020,8(26):8777-8785.
- [58] Shao T Q,Du H L,Ma H,et al.Potassium-sodium niobate based lead-free ceramics:Novel electrical energy storage materials [J].Journal of Materials Chemistry A,2017,5:554-563.
- [59] Chen B,Tian Y,Lu J,et al.Ultrahigh storage density achieved with (1-x)KNN-xBZN ceramics [J].Journal of the European Ceramic Society,2020,40(8):2936-2944.
- [60] Ren X D,Li J,Peng Z H,et al.Regulation of energy density and efficiency in transparent ceramics by grain refinement [J].Chemical Engineering Journal,2020,390:124566.
- [61] Wang X,Yu H,Zhao P,et al.Optimizing the grain size and grain boundary morphology of (K,Na)NbO3-based ceramics:Paving the way for ultrahigh energy storage capacitors [J].Journal of Materiomics,2021,7(4):780-789.
- [62] Dong X,Li X,Chen X,et al.Ultrahigh energy storage density and power density achieved simultaneously in NaNbO3-based lead-free ceramics via antiferroelectricity enhancement [J].Journal of Materiomics,2020,11:629-639.
- [63] Fan Y Z,Zhou Z Y.Designing novel lead-free NaNbO3-based ceramic with superior comprehensive energy storage and discharge properties for dielectric capacitor applications via relaxor strategy [J].Journal of the European Ceramic Society,2019,39(15):4770-4777.
- [64] Ye J,Wang G,Zhou M,et al.Excellent comprehensive energy storage properties in novel lead-free NaNbO3-based ceramics for dielectric capacitor applications [J].Journal of Materials Chemistry C,2019,7(19):5639-5645.
- [65] Tian A,Zuo R,Qi H,et al.Large energy-storage density in transition-metal oxide modified NaNbO3-Bi(Mg0.5Ti0.5)O3 lead-free ceramics through regulating the antiferroelectric phase structure [J].Journal of Materials Chemistry A,2020,8(17):8352-8359.