高阻高B值(FeCoCrMnZn)_3O_4高熵热敏陶瓷(FeCoCrMnZn)_3O_4 high entropy thermosensitive ceramics with high resistivity and high B value
吴鹏程,梁炳亮,任剑怡,张乐,杨开怀,吴新根
摘要(Abstract):
高熵氧化物陶瓷由于独特的结构及新奇的“高熵效应”而表现出优异的性能。为制得高灵敏度和高稳定性的NTC热敏电阻,采用固相反应法制备了(FeCoCrMnZn)_3O_4高熵热敏陶瓷,研究制备工艺对其物相组成、显微结构和电学性能的影响。结果表明:(FeCoCrMnZn)_3O_4粉体在900℃煅烧即可形成尖晶石结构的单相固溶体,(FeCoCrMnZn)_3O_4陶瓷中各元素均匀分布,符合高熵化特征,其室温电阻率高达142.5 kΩ·cm,热敏常数B值高达4487 K,而电阻漂移率仅为1.22%(1425℃,4 h)。总之,(FeCoCrMnZn)_3O_4高熵热敏陶瓷具有良好的NTC特性,较普通NTC热敏电阻而言,具有更高的电阻率、B值及稳定性,可用于抑制大功率电器产生的浪涌电流及温度的检测和控制等。
关键词(KeyWords): 高熵氧化物陶瓷;NTC热敏电阻;尖晶石结构;固相反应法;电学性能
基金项目(Foundation): 国家自然科学基金(51664043);; 江西省金属材料微结构调控重点实验室(南昌航空大学)开放基金(EJ202101423);; 国家留学基金委公派访问学者项目(201708360036);; 南昌航空大学三小项目(2022CL052);; 福建省高等职业院校应用技术协同创新中心建设项目(闽教科[2016]71号)
作者(Author): 吴鹏程,梁炳亮,任剑怡,张乐,杨开怀,吴新根
DOI: 10.14106/j.cnki.1001-2028.2023.1741
参考文献(References):
- [1] 汪洋.Ni-Mn-O系NTC热敏电阻研究进展[J].电子元件与材料,2020,39(10):25-31.
- [2] 姜斌,王海玲,王恩信,等.掺杂对MnCoNi系NTC热敏电阻器稳定性的影响[J].电子元件与材料,1997,16(4):37-40.
- [3] Aleksic O S,Nikolic M V,Lukovic M D,et al.Preparation and characterization of Cu and Zn modified nickel manganite NTC powders and thick film thermistors[J].Materials Science & Engineering B:Solid State Materials for Advanced Technology,2013,178:202-210.
- [4] Park K,Lee J K.The effect of ZnO content and sintering temperature on the electrical properties of Cu-containing Mn1.95-xNi0.45Co0.15Cu0.45ZnxO4 (0≤x≤0.3) NTC thermistors[J].Journal of Alloys and Compounds,2009,475(1/2):513-517.
- [5] 汪洋,王忠兵,李凤霞,等.Zn掺杂对Ni-Mn-Cu-O系NTC热敏电阻的影响[J].电子元件与材料,2014,33(12):17-20.
- [6] Tsai M H,Yeh J W.High-entropy alloys:A critical review[J].Materials Research Letters,2014,2(3):107-123.
- [7] Miracle D B,Senkov O N.A critical review of high entropy alloys and related concepts[J].Acta Materialia,2017,122:448-511.
- [8] Kim K B,Warren P J,Cantor B,et al.Devitrification of nano-scale icosahedral phase in multicomponent alloys[J].Materials Science and Engineering A,2007,449:983-986.
- [9] Chen C,Zhang H,Fan Y,et al.Improvement of corrosion resistance and magnetic properties of FeCoNiAl0.2Si0.2 high entropy alloy via rapid-solidification[J].Intermetallics,2020,122:106778.
- [10] Edalati P,Floriano R,Tang Y,et al.Ultrahigh hardness and biocompatibility of high-entropy alloy TiAlFeCoNi processed by high-pressure torsion[J].Materials Science and Engineering C,2020,112:110908.
- [11] Niu C,Larosa C R,Miao J,et al.Magnetically-driven phase transformation strengthening in high entropy alloys[J].Nature Communications,2018,9(1):1363.
- [12] Rost C M,Sachet E,Borman T,et al.Entropy-stabilized oxides[J].Nature Communications,2015,6(1):8485.
- [13] Wang Q,Sarkar A,Wang D,et al.Multi-anionic and -cationic compounds:New high entropy materials for advanced Li-ion batteries[J].Energy and Environmental Science,2019,12(8):2433-2442.
- [14] Bérardan D,Franger S,Dragoe D,et al.Colossal dielectric constant in high entropy oxides[J].Physica Status Solidi(RRL)-Rapid Research Letters,2016,10(4):328-333.
- [15] Chen K P,Pei X T,Tang L,et al.A five-component entropy-stabilized fluorite oxide[J].Journal of the European Ceramic Society,2018,38(11):4161-4164.
- [16] Gild J,Samiee M,Braun J L,et al.High-entropy fluorite oxides[J].Journal of the European Ceramic Society,2018,38:3578-3584.
- [17] Mao A Q,Xiang H Z,Zhang Z G,et al.A new class of spinel high-entropy oxides with controllable magnetic properties[J].Journal of Magnetism and Magnetic Materials,2020,497:165884.
- [18] Dabrowa J,Stygar M,Mikula A,et al.Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 high entropy oxide characterized by spinel structure[J].Materials Letters,2018,216:32-36.
- [19] Stygar M,Dabrowa J,Modzierz M,et al.Formation and properties of high entropy oxides in Co-Cr-Fe-Mg-Mn-Ni-O system:Novel (Cr,Fe,Mg,Mn,Ni)3O4 and (Co,Cr,Fe,Mg,Mn)3O4 high entropy spinels[J].Journal of the European Ceramic Society,2020,40(4):1644-1650.
- [20] Jiang S C,Hu T,Zhou N X,et al.A new class of high-entropy perovskite oxides[J].Scripta Materialia,2018,142:116-120.
- [21] Wang K,Ma B,Li T,et al.Fabrication of high-entropy perovskite oxide by reactive flash sintering[J].Ceramics International,2020,46(11):18358-18361.
- [22] Vinnik D A,Trofimov E A,Zhivulin V E,et al.High-entropy oxide phases with magnetoplumbite structure[J].Ceramics International,2020,46(7):9656-9660.
- [23] Vinnik D A,Trofimov E A,Zhivulin V E,et al.The new extremely substituted high entropy (Ba,Sr,Ca,La)Fe6-x(Al,Ti,Cr,Ga,In,Cu,W)xO19 microcrystals with magnetoplumbite structure[J].Ceramics International,2019,45(10):12942-12948.
- [24] Teng Z,Zhu L N,Tan Y Q,et al.Synthesis and structures of high-entropy pyrochlore oxides[J].Journal of the European Ceramic Society,2020,40(4):1639-1643.
- [25] Wright A,Wang Q,Ko S,et al.Size disorder as a descriptor for predicting reduced thermal conductivity in medium- and high-entropy pyrochlore oxides[J].Scripta Materialia,2020,181:76-81.
- [26] 王恩信,荆玉兰,王鹏程,等.NTC热敏电阻器的现状与发展趋势[J].电子元件与材料,1997,16(4):1-9.
- [27] 李雅洁,刘剑,刘兰徽.NTC热敏陶瓷研究进展[J].电子元件与材料,2022,41(8):771-780.
- [28] Liang B L,Ai Y L,Wang Y L,et al.Spinel-type (FeCoCrMnZn)3O4 high-entropy oxide:Facile preparation and supercapacitor performance[J].Materials,2020,13(24):5798.
- [29] 管学茂,王庆良,王庆平,等.现代材料分析测试技术[M].徐州:中国矿业大学出版社,2013:93-99.
- [30] 何林.块体、厚膜和薄膜NTC热敏电阻的制备与性能[D].广州:华南理工大学,2012.
- [31] 王忠兵.Fe-Mn-Ni-O 尖晶石型负温度系数热敏陶瓷的制备与老化性能研究[D].合肥:中国科学技术大学,2005.
- [32] 项厚政,谢鸿翔,李文超,等.尖晶石型高熵氧化物的制备和电化学性能[J].高等学校化学学报,2020,41(8):1801-1809.
- [33] 黄祖映.低阻高B值Mn-Ni-Cu-O 系NTC热敏材料的研究[D].广州:华南理工大学,2015.
- [34] Varghese J M,Seema A,Dayas K R.Microstructural,electrical and reliability aspects of chromium doped Ni-Mn-Fe-O NTC thermistor materials[J].Materials Science and Engineering B,2008,149(1):47-52.
- [35] Groen W A,Metzmacher C,Zaspalis V,et al.Aging of NTC ceramics in the system Mn-Ni-Fe-O[J].Journal of the European Ceramic Society,2001,21(10/11):1793-1796.
- [36] 张婷婷.Mn-Co-Ni-O 系热敏电阻制备的工艺优化及特性研究[D].乌鲁木齐:新疆大学,2015.