金属锂表面Sn-Al双金属包覆层的构筑及其空气稳定性研究Fabrication and air stability investigation of metallic Sn-Al bilayer protected lithium metal anode
王弘毅,李晶泽
摘要(Abstract):
金属锂是下一代高能量密度锂电池的首选负极材料,然而其空气稳定性差导致金属锂二次电池工业化制备成本大大提高,开发具有高空气稳定性、优异电化学性能、低制备成本的表面包覆改性锂负极是其商业化的必由之路。在金属锂箔衬底上通过磁控溅射技术沉积一层74 nm厚的Al薄膜,再以相同参数沉积一层3μm厚的Sn薄膜,得到双层金属包覆膜样品Sn@Al@Li。采用扫描电子显微镜观察空气腐蚀前后样品表面形貌变化,结合X射线衍射测试,发现Sn@Al@Li表面金属包覆层形成的表面钝化膜起到了保护作用,使得样品在空气中放置3 h后其表面仍然存在单质金属Sn层,呈现明显的金属光泽。组装半电池进行放电容量测试,容量释放率达到80%,而纯锂样品仅剩14%。Sn@Al@Li不仅大大提高了空气稳定性,同时也一定程度提高了电化学性能,对称电池在1 mA/cm~2,1 mAh/cm~2条件下能稳定循环300 h。双层金属薄膜包覆方法提高空气稳定性的同时也改善了电化学性能,对锂二次电池的商业化应用具有重要意义。
关键词(KeyWords): 金属锂电池;锂负极;磁控溅射;薄膜;空气稳定性
基金项目(Foundation): 国家自然科学基金(21673033,52172184)
作者(Author): 王弘毅,李晶泽
DOI: 10.14106/j.cnki.1001-2028.2023.0274
参考文献(References):
- [1] 彭佳悦,祖晨曦,李泓.锂电池基础科学问题(Ⅰ)——化学储能电池理论能量密度的估算 [J].储能科学与技术,2013,2(1):55-62.
- [2] Dunn B,Kamath H,Tarascon J M.Electrical energy storage for the grid:A battery of choices [J].Science,2011,334(6058):928-935.
- [3] Lin D,Liu Y,Cui Y.Reviving the lithium metal anode for high-energy batteries [J].Nature Nanotechnology,2017,12(3):194-206.
- [4] Kozen A C,Lin C F,Pearse A J,et al.Next-generation lithium metal anode engineering via atomic layer deposition [J].ACS Nano,2015,9(6):5884-5892.
- [5] Alaboina P K,Rodrigues S,Rottmayer M,et al.In situ dendrite suppression study of nanolayer encapsulated Li metal enabled by zirconia atomic layer deposition [J].ACS Applied Materials & Interfaces,2018,10(38):32801-32808.
- [6] Adair K R,Zhao C,Banis M N,et al.Highly stable lithium metal anode interface via molecular layer deposition zircone coatings for long life next-generation battery systems [J].Angewandte Chemie,2019,131(44):15944-15949.
- [7] Asadi M,Sayahpour B,Abbasi P,et al.A lithium-oxygen battery with a long cycle life in an air-like atmosphere [J].Nature,2018,555(7697):502-506.
- [8] Yang T,Jia P,Liu Q,et al.Air-stable lithium spheres produced by electrochemical plating [J].Angewandte Chemie,2018,130(39):12932-12935.
- [9] Qu S,Jia W,Wang Y,et al.Air-stable lithium metal anode with sputtered aluminum coating layer for improved performance [J].Electrochim Acta,2019,317:120-127.
- [10] Chen T,Meng F,Zhang Z,et al.Stabilizing lithium metal anode by molecular beam epitaxy grown uniform and ultrathin bismuth film [J].Nano Energy,2020,76:105068.
- [11] Yang Q,Li W,Dong C,et al.PIM-1 as an artificial solid electrolyte interphase for stable lithium metal anode in high-performance batteries [J].Journal of Energy Chemistry,2020,42:83-90.
- [12] Zhao Y,Wang D,Gao Y,et al.Stable Li metal anode by a polyvinyl alcohol protection layer via modifying solid-electrolyte interphase layer [J].Nano Energy,2019,64:103893.
- [13] Liu T,Feng X L,Jin X,et al.Protecting the lithium metal anode for a safe flexible lithium-air battery in ambient air [J].Angewandte Chemie,2019,131(50):18408-18413.
- [14] Cao Z,Xu P,Zhai H,et al.Ambient-air stable lithiated anode for rechargeable Li-ion batteries with high energy density [J].Nano Letters,2016,16(11):7235-7240.
- [15] Lee D J,Lee H,Kim Y J,et al.Sustainable redox mediation for lithium-oxygen batteries by a composite protective layer on the lithium-metal anode [J].Advanced Materials,2016,28(5):857-863.
- [16] Xie M,Lin X,Huang Z,et al.A Li-Al-O solid-state electrolyte with high ionic conductivity and good capability to protect Li anode [J].Advanced Functional Materials,2020,30(7):1905949.
- [17] Wu C,Guo F,Zhuang L,et al.Mesoporous silica reinforced hybrid polymer artificial layer for high-energy and long-cycling lithium metal batteries [J].ACS Energy Letters,2020,5(5):1644-1652.
- [18] Wang Y,Wang Z,Zhao L,et al.Lithium metal electrode with increased air stability and robust solid electrolyte interphase realized by silane coupling agent modification [J].Advanced Materials,2021,33(14):2008133.
- [19] Liu X,Liu J,Qian T,et al.Novel organophosphate-derived dual-layered interface enabling air-stable and dendrite-free lithium metal anode [J].Advanced Materials,2020,32(2):1902724.
- [20] Zhang Y,Wang H,Yang Y,et al.Polyacrylonitrile fibers network reinforced polymer electrolyte with Li-Sn alloy layer protected Li anode toward ultra-long cycle lifespan for room-temperature solid-state batteries [J].Chemical Engineering Journal,2023,461:141993.
- [21] Huang Y,Liu C,Wei F,et al.Chemical prelithiation of Al for use as an ambient air compatible and polysulfide resistant anode for Li-ion/S batteries [J].Journal of Materials Chemistry A,2020,8(36):18715-18720.
- [22] Xu H,Li S,Zhang C,et al.Roll-to-roll prelithiation of Sn foil anode suppresses gassing and enables stable full-cell cycling of lithium ion batteries [J].Energy & Environmental Science,2019,12(10):2991-3000.
- [23] Kumagai N,Kikuchi Y,Tanno K,et al.Electrochemical investigation of the diffusion of lithium in β-LiAl alloy at room temperature [J].Journal of Applied Electrochemistry,1992,22(8):728-732.
- [24] Brun T,Jorgensen J,Misawa M,et al.Defects and disorder in the fast-ion electrode lithium-aluminum [J].Journal of the Electrochemical Society,1982,129(11):2509.