氮掺杂空心碳球锌离子混合电容器正极材料的制备及其性能Preparation and properties of nitrogen-doped hollow carbon spheres cathode material for zinc-ion hybrid capacitor
刘永川
摘要(Abstract):
以溶胶-凝胶法合成的二氧化硅球为模板,酚醛树脂为前驱体,采用模板法制备了氮掺杂空心碳球,并将其用作锌离子混合电容器正极材料。该空心碳球具有空腔结构的微观形貌和介孔主导的分级孔道,且碳壁相互连接,有效促进了离子传输扩散和提高了材料的电子导电性。研究表明:在电化学性能方面,原位氮掺杂极大地改善了电极材料的电解液浸润性和电子导电性,并提供更多的赝电容容量,从而全面提升了电极材料的性能。在0.2 A·g~(-1)电流密度下,其比容量可以达到147.8 mAh·g~(-1),经过20000次循环后容量保持率为82%,展现出良好的倍率性能和循环稳定性。因此,氮掺杂空心碳球有望成为下一代高性能锌离子混合电容器正极材料。
关键词(KeyWords): 空心碳球;氮掺杂;正极;锌离子;超级电容器
基金项目(Foundation): 福建省STS计划配套项目(2020T3004,2020T3030);; 泉州市第一批科技计划项目(2020G17);; 福建省引导性项目(2020H0040)
作者(Author): 刘永川
DOI: 10.14106/j.cnki.1001-2028.2023.0216
参考文献(References):
- [1] Xiao M,Su Y,Du B.Research progress of supercapacitors[J].Electronic Components & Materials,2019,38 (9):1-12.
- [2] Zhao X,Qiu P,Jiang H,et al.Latest research progress of electrode materials for supercapacitor[J].Electronic Components & Materials,2015,34 (1):1-8.
- [3] Simon P,Gogotsi Y,Dunn B.Where do batteries end and supercapacitors begin?[J].Science,2014,343(6176):1210-1211.
- [4] Lu L,Han X B,Li J Q,et al.A review on the key issues for lithium-ion battery management in electric vehicles [J].Journal of Power Sources,2013,226:272-288.
- [5] Shao Y L,El-kady M F,Sun J Y,et al.Design and mechanisms of asymmetric supercapacitors [J].Chemical Reviews,2018,118(18):9233-9280.
- [6] Dai J Q,Fu K,Palanisamy R,et al.A solid state energy storage device with supercapacitor-battery hybrid design [J].Journal of Materials Chemistry A,2017,5(29):15266-15272.
- [7] Lim E,Jo C,Kim M S,et al.High-performance sodium-ion hybrid supercapacitor based on Nb2O5@carbon core-shell nanoparticles and reduced graphene oxide nanocomposites [J].Advanced Functional Materials,2016,26(21):3711-3719.
- [8] Shi B,Li L,Chen A B,et al.Continuous fabrication of Ti3C2Tx MXene-based braided coaxial zinc-ion hybrid supercapacitors with improved performance [J].Nano-Micro Letters,2022,14(1):34.
- [9] Li X X,Ma Y A,Yue Y,et al.A flexible Zn-ion hybrid micro-supercapacitor based on MXene anode and V2O5 cathode with high capacitance [J].Chemical Engineering Journal,2022,428:130965.
- [10] Zhang W L,Yin J,Jian W B,et al.Supermolecule-mediated defect engineering of porous carbons for zinc-ion hybrid capacitors [J].Nano Energy,2022,103:107827.
- [11] Lu Y Y,Li Z W,Bai Z Y,et al.High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode[J].Nano Energy,2019,66:104132.
- [12] He L,Liu Y,Li C,et al.A low-cost Zn-based aqueous supercapacitor with high energy density [J].ACS Applied Energy Materials,2019,2(8):5835-5842.
- [13] Wang Z,Huang J,Guo Z,et al.A metal-organic framework host for highly reversible dendrite-free zinc metal anodes [J].Joule,2019,3(5):1289-1300.
- [14] Dong Y,Zhang S,Du X,et al.Boosting the electrical double-layer capacitance of graphene by self-doped defects through ball-milling [J].Advanced Functional Materials,2019,29(24):1901127.
- [15] Tian Y,Amal R,Wang D W.An aqueous metal-ion capacitor with oxidized carbon nanotubes and metallic zinc electrodes [J].Frontiers in Energy Research,2016,4:34.
- [16] Wu S,Chen Y,Jiao T,et al.An aqueous Zn-ion hybrid supercapacitor with high energy density and ultrastability up to 80000 cycles [J].Advanced Energy Materials,2019,9(47):1902915.
- [17] Pan Z,Lu Z,Xu L,et al.A robust 2D porous carbon nanoflake cathode for high energy-power density Zn-ion hybrid supercapacitor applications [J].Applied Surface Science,2020,510:145384.
- [18] Liu P,Liu W,Huang Y,et al.Mesoporous hollow carbon spheres boosted,integrated high performance aqueous Zn-ion energy storage [J].Energy Storage Mater,2020,25:858-865.
- [19] Dong L B,Ma X P,Li Y,et al.Extremely safe,high-rate and ultralong-life zinc-ion hybrid supercapacitors [J].Energy Storage Materials,2018,13:96-102.
- [20] Yin J,Zhang W,Wang W,et al.Electrochemical zinc ion capacitors enhanced by redox reactions of porous carbon cathodes [J].Advanced Energy Materials,2020,10(37):2001705.
- [21] Mo F N,Chen Z,Liang G J,et al.Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn-MnO2 batteries with superior rate capabilities [J].Advanced Energy Materials,2020,10(16):11.
- [22] Pomerantz Z,Levi M D,Salltra G,et al.UV-Vis-NIR spectroelectrochemical and in situ conductance studies of unusual stability of n-and p-doped poly (dimethyldioctylquaterthiophene-alt- oxadiazole) under high cathodic and anodic polarizations [J].Physical Chemistry Chemical Physics,2008,10(7):1032-1042.
- [23] Wang J,Polleux J,Lim J,et al.Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles [J].Journal of Physical Chemistry C,2007,111(40):14925-14931.